Zum Hauptinhalt springen

News

head uk2

Einfluss von Crosslinkern und Stabilisierungsmethoden auf poröse Chitosan-Bioglas-Netzwerke

Chitosan-Bioglas Netzwerke können als Biomaterialien in der Medizin z.B. als Knochenimplantat eingesetzt werden. Verbessert werden können deren physiochemischen und mechanischen Eigenschaften durch Crosslinker und verschiedene Stabilisierungsmethoden. In der vorgestellten Studie wurden sechs von diesen miteinander verglichen.

 

Biernat, M.; Woźniak, A.; Chraniuk, M.; Panasiuk, M.; Tymowicz-Grzyb, P.; Pagacz, J.; Antosik, A.; Ciołek, L.; Gromadzka, B.; Jaegermann, Z. Effect of Selected Crosslinking and Stabilization Methods on the Properties of Porous Chitosan Composites Dedicated for Medical Applications. Polymers 2023, 15, 2507. https://doi.org/10.3390/polym15112507

AUSWIRKUNG AUSGEWÄHLTER VERNETZUNGS-UND STABILISIERUNGSMETHODEN AUF DIE EIGENSCHAFTEN VON PORÖSEN CHITOSAN-KOMPOSITEN FÜR MEDIZINISCHE ANWENDUNGEN

Die wichtigsten Anforderungen an Biomaterialien sind Biokomptabilität, Bioaktivität und eine einfache Verfügbarkeit. Zudem müssen diese für bestimmte Anwendungen zusätzliche Anforderungen erfüllen z.B. für Knochenimplantate sollten Biomaterialen neben einer guten Bioabbaubarkeit, eine optimale Porengröße und eine ausreichende mechanische Stärke besitzen.

Chitosan (CTS) wird vielseitig im Tissue Engineering und der regenerativen Medizin eingesetzt. Es ist biokompatibel, bioabbaubar und nicht toxisch. Zusätzlich dazu besitzt CTS antimikrobielle und osteokonduktive Eigenschaften. Allerdings leiden Chitosannetzwerke häufig unter einer mangelnden mechanischen Stabilität, weshalb Chitosan oft mit keramischen Partikeln wie Hydroxyapatit und Bioglas (BG) gemischt wird. Das ermöglicht die Produktion von verstärkten und biologisch aktiven Scaffolds.

Eine weitere Möglichkeit zur Verbesserung der mechanischen Stärke und chemischen Beständigkeit ist die Verwendung von polymeren Quervernetzern. Diese ermöglichen zudem den Zugewinn von weiteren Eigenschaften wie Elastizität, Unlöslichkeit und gleichmäßiges Schwellverhalten. In der Literatur werden verschiedene Crosslinking Methoden beschrieben. Beliebte Crosslinker für Chitosan in porösen Strukturen sind z.B. Genipin, Vanillin, L-Aspartatsäure, Natriumalginat, Di-Natrium-β-Glycerolphosphat oder Natrium Tripolyphosphat (TPP). Dabei hat sich gezeigt, dass unterschiedliche Crosslinker bestimmte Strukturen bevorzugen. Beispielsweise ermöglichen Genipin und Vanillin Scaffolds mit höherer mechanischer Stärke und besserer Strukturreproduzierbarkeit. Das Crosslinking insgesamt findet entweder über ionische Bindungen (z.B. TTP und Di-Natrium-β-Glycerolphosphat) oder kovalente Bindungen (Genipin, Vanillin) statt.

In der vorgestellten Studie wurde die Herstellung einen neuen porösen CTS-BG Netzwerkes untersucht unter der Verwendung verschiedener Crosslinker und Stabilisierungsmethoden (Genipin (GEN), Vanillin (VAN), Di-Natrium-β-Glycerolphosphat (BGP), TPP, Ethanol (EtOH), thermische Dehydrierung (TEMP)). Abhängig davon wurden die erhaltenden Netzwerke hinsichtlich der erhaltenden Mikrostruktur und physiochemischen Eigenschaften untersucht. Zudem wurde geschaut, inwiefern der Crosslinker selbst einen Einfluss hat. Verwendet für die Studie wurde ein Chitosan mit einem DDA von 95 und einer Viskosität von 2000 mPas der Heppe Medical Chitosan GmbH (95/2000).

ERGEBNISSE

Tab.1: Vergleich der hergestellten CTS-BG Scaffolds mit unterschiedlichen Crosslinkern und Stabilisierungsmethoden bei Bewertung der Eigenschaften mit Punkten, Thermische Stabilität: 5 Punkte für größte thermische Stabilität, Mikrostruktur: 5 Punkte für den größten Porendurchmesse, Pyknometrische Dichte: 5 Punkte für die geringste pyknometrische Dichte, Spezifische Oberfläche: 5 Punkte für die geringste spezifische Oberfläche, Druckfestigkeit: 5 Punkte für die höchste Druckfestigkeit, Schwellverhalten: 5 Punkte für das geringste Schwellen, Stabilität: 5 Punkte für die höchste Stabilität, Zytotoxizität: 5 Punkte für die geringste Zytotoxizität, Zellproliferation: 5 Punkte für das beste Zellwachstum

Kategorie/Probe

CTS-BG EtOH

CTS-BG TEMP

CTS-BG TPP

CTS-BG VAN

CTS-BG GEN

CTS-BG BGP

Thermische Stabilität

5

4

0

3

2

1

Mikrostruktur

4

3

0

1

5

2

Pyknometrische Dichte

4

2

1

0

5

3

Spezifische Oberfläche

4

0

2

1

5

3

Druckfestigkeit

2

1

5

0

4

3

Schwellverhalten

0

1

4

2

5

3

Stabilität

5

3

4

2

0

1

Zytotoxizität

0

2

4

5

1

3

Zellproliferation

3

1

2

0

5

4

Total

27

17

22

14

32

23

Schlussfolgerungen: In der vorgestellten Studie ermöglichten alle Vernetzungsmethoden die Herstellung stabiler, nicht zytotoxischer poröser Komposits aus CTS und BG. Genipin zeigte im Vergleich die besten Eigenschaften in Bezug auf die physiochemischen und mechanischen Eigenschaften, während in Ethanol stabilisierte Netzwerke sehr quellstabil waren und die Zellproliferation förderten. Die durch thermische Dehydrierung erzeugten Komposite wiesen die spezifischste Oberfläche auf.

Link zum Artikel: Polymers | Free Full-Text | Effect of Selected Crosslinking and Stabilization Methods on the Properties of Porous Chitosan Composites Dedicated for Medical Applications (mdpi.com)

chitosan, tissue engineering, Crosslinking

Kontakt

  • Heppe Medical Chitosan GmbH
    Heinrich-Damerow-Straße 1
    D-06120 Halle (Saale)
  • Tel.: +49 (0) 345 27 996 300
    Fax: +49 (0) 345 27 996 378
  • Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein.

News

Mikronadeln gegen resistente Infektionen: Innovative Wundheilung mit Chitosan und Nanozymen

Die Behandlung infizierter Brandwunden – insbesondere, wenn antibiotikaresistente Bakterien im Spiel sind – stellen nach wie vor eine große Herausforderung in der modernen Medizin dar.
Ein Forschungsteam hat nun eine bahnbrechende Lösung vorgestellt: ein hydrogelbasiertes Mikronadel-System, das sogenannte „High-Entropy Nanozyme“ mit Chitosan kombiniert.


Diese neuartige Technologie bekämpft nicht nur resistente Keime, sondern fördert auch aktiv die Wundheilung – mit einem besonderen Fokus auf die Rolle von Chitosan als Schlüsselmaterial.

Chitosan als innovativer Futterzusatz – Leistungsförderung bei Nutztieren am Beispiel einer Kaninchenstudie

Chitosan in der Tierernährung – ein wachsendes Forschungsfeld

Chitosan, ein bioaktives Polysaccharid aus der Schale von Krebstieren, rückt zunehmend in den Fokus der Tierernährungsforschung. Seine natürlichen Eigenschaften – antimikrobiell, immunmodulierend, verdauungsfördernd – machen es zu einem vielversprechenden Zusatzstoff in der (Nutz-) Tierhaltung. Studien zeigen, dass es sowohl Leistungsparameter verbessern als auch die Futterverwertung optimieren kann.
Eine aktuelle Studie untersucht exemplarisch die Wirkung von Chitosan bei Mastkaninchen – mit spannenden Ergebnissen, die sich auch auf andere Tierarten übertragen lassen.

 

Chitosan und Koffein – ein innovatives Duo für Gesundheit, Kosmetik und Umwelt

Chitosan, ein vielseitiges Biopolymer aus Chitin, findet längst breite Anwendung in Pharmazie, Medizin, Kosmetik und Umwelttechnologie. Besonders spannend wird es, wenn Chitosan mit einem anderen bekannten Wirkstoff kombiniert wird: nämlich Koffein. Was zunächst wie die Rezeptur für ein energiespendendes Nahrungsergänzungsmittel klingt, ist tatsächlich ein hochinteressantes Forschungsfeld mit vielversprechenden Anwendungen – weit über die Lebensmittelindustrie hinaus.

Innovative Mastitis Therapie mit Chitosan: Für gesunde Euter, glückliche Kühe und hochwertige Milch

Mastitis ist eine entzündliche Erkrankung der Milchdrüse und stellt weltweit eines der bedeutendsten Gesundheitsprobleme in der Milchwirtschaft dar. Sie führt zu gravierenden ökonomischen Verlusten durch reduzierte Milchleistung, vorzeitiges Verwerfen von Milch, Tierverluste sowie erhöhte Behandlungskosten. Darüber hinaus hat Mastitis erhebliche Auswirkungen auf das Tierwohl: Die Erkrankung verursacht Schmerzen, Fieber, systemische Entzündungsreaktionen und langfristige Schäden am Eutergewebe. In schweren Fällen ist eine Euthanasie erforderlich.

 

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.