Bimetallische Chitosan-Mikrogele
Das Nutzen von Mikrogelen ist eine Möglichkeit Gewebe biomimetisch nachzubilden. In der präsentieren Studie sollen Chitosan-Mikrogele mit Zn (II) und Cu (II)-Ionen funktionalisiert werden um deren physikochemischen Eigenschaften zu verbessern.
Herstellung und Eigenschaften von bimetallischen sphärischen Chitosan-Mikrogelen
Lončarević, A.; Ostojić, K.; Urlić, I.; Rogina, A. Preparation and Properties of Bimetallic Chitosan Spherical Microgels. Polymers 2023, 15, 1480. https://doi.org/10.3390/polym15061480
Geweberegeneration im kleinen Maßstab kann durch implantierte Biomaterialen, z.B. Hydrogele, die Eigenschaften einer extrazellulären Matrix (ECM) aufweisen, verbessert werden. Hydrogele bieten eine gute Plattform für Geweberegeneration durch ihr großes Oberflächen-zu-Volumen Verhältnis und eine hohe Porosität. Zusätzlich dazu erlaubt ein hoher Wassergehalt ein Mikroklima, dass eine Gewebebildung initiieren kann. 3D-vernetzte Hydrogele ermöglichen das Einkapseln von Biomolekülen zur weiteren Funktionalisierung für Tissue Engineering und Wirkstofftransport. Vorteilhaft ist dabei physikalisches Crosslinking mit schwachen Bindungen. Dort ist der Transport von Biomolekülen möglich, ohne den Verlust ihrer strukturellen Integrität.
Eine Alternative zu mit Biomolekülen funktionalisierte Hydrogele können Hydrogele basierend auf natürlichen Polymeren funktionalisiert mit Metall-Ionen bieten. Sogenannte therapeutische Ionen können dabei spezifische biologische Funktionen verstärken, wie Angiogenesis, Osteogenesis oder antibakterielle Effekte.
Chitosan (CTS)-basierte Hydrogele sind dafür besonders interessant, da sie durch die funktionellen Gruppen des CTS gut geeignet sind für die Komplexierung von Metallionen. Außerdem bilden sie eine Struktur ähnlich der ECM aus, was sie favorisiert für Anwendungen im Bereich Tissue Engineering.
Gewebe allgemein werden aus kleinen heterogenen Bausteinen gebildet, die eine Hierarchie von einem mikroskopischen bis makroskopischen Level bilden. Aus dem Grund gelten mikroskalierte Hydrogele, z.B. Mikrogele, als eine Methode um biomimetische Gewebe herzustellen. Dabei können durch zusätzliche Oberflächenmodifikationen mit speziellen Biomolekülen die Adhäsion, Agglomeration und Integration mit dem umgebenen Gewebe verbessert werden.
In der vorgestellten Studie sollen CTS-basierten Mikrogelen mit Zn (II) und Cu (II)-Ionen funktionalisiert werden. Ziel ist es bimetallische-CTS-Komplex Mikrogele mit einer engen Größenverteilung und einer definierten Oberflächenmorphologie herzustellen. Untersucht wird der Einfluss des Ionengehaltes und Ionenart auf Größe, Morphologie, Schwellverhalten, Bioabbaubarkeit und biologische Eigenschaften des Mikrogels. Zusätzlich dazu wurde der Einfluss des Deacetylierungsgrads (DDA) des CTS auf die Mikrogele untersucht. Verwendet wurden dafür Chitosan der Heppe Medical Chitosan GmbH mit einem DDA von 83,2 % und einer Viskosität von 293 mPas (Chitosan 85/200) und mit einem DDA 96,9 % und einer Viskosität von 324 mPas (Chitosan 95/200).
ERGEBNISSE
- Erfolgreiche Herstellung von bimetallischen, hochsphärischen Chitosan-Mikrogelen mit einer engen Größenverteilung mittels des elektrohydrodynamischen Zerstäubungsverfahrens
- Größenverteilung für bimetallische Chitosan Partikel von 60-110 μm
- FTIR wies physikalische Wechselwirkung von Chitosan und den Metallionen hin → Ausbildung von Metallionen-Chitosan-Komplexen
- Quellfähigkeit der bimetallischen Chitosan-Mikrogele nimmt mit steigenden DDA und Cu (II) Gehalt ab → stärkere Komplexbildung von Zn (II)-Ionen
- Gute Stabilität der Mikrogele während eines vier-wöchigen enzymatischen Abbaus
- Bimetallische Systeme mit einer geringen Menge an Cu (II) Ionen zeigte eine gute Zytokomptabilität für beide verwendete Chitosane
Schlussfolgerungen: Die physikochemischen Eigenschaften von Mikrogelen auf Chitosan-basis können durch die Bildung physikalischer Wechselwirkungen zwischen den Amino- und Hydroxylgruppen von Chitosan und therapeutischen Metallionen verbessert werden. Die in der vorgestellten Studie generierten Ergebnisse zeigen das Potenzial von bimetallischen Chitosan-Mikrogelen als mikroskopisch kleine Matrizen für Anwendungen im Tissue Engineering.
Link zum Artikel: https://www.mdpi.com/2073-4360/15/6/1480