Chitosan-Mikropartikel zur Behandlung von HIV-1-Infektionen
Small interferring RNAs (siRNAs) können durch sogenanntes Gen Silencing Viren inaktivieren. Um diesen Prozess in der Biomedizin nutzen zu können, muss der Transport der instabilen siRNAs verbessert werden. In der vorgestellten Studie werden dafür siRNAs an Chitosan Mikropartikel gekoppelt und für die Inaktivierung von viralen Proteinen in HIV-1 infizierten C8166-Zellen untersucht.
siRNA-TRANSFEKTION DURCH CHITOSAN-MIKROPARTIKEL ZUR BEHANDLUNG VON HIV-1-INFEKTIONEN MENSCHLICHER ZELLLININEN
Chronopoulou, L.; Falasca, F.; Di Fonzo, F.; Turriziani, O.; Palocci, C. siRNA Transfection Mediated by Chitosan Microparticles for the Treatment of HIV-1 Infection of Human Cell Lines. Materials 2022, 15, 5340. https://doi.org/10.3390/ma15155340
Einer der vielversprechendsten Trends der Biomedizin ist die Entwicklung von dem klassischen Wirkstofftransport zur Manipulation der Genexpression. Small interferring RNAs (siRNA) sind in der Lage bestimmte Gene zu inaktivieren und daraufhin die Expression eines bestimmten Proteins zu verhindern. Dieser Prozess geschieht durch die sogenannte RNA Interferenz (RNAi). Durch den posttranskriptionalen Gen Silencing Mechanismus können z.B. Pflanzen oder Pilze Viren inaktivieren. Auch bei Säugetieren kann RNAi zu einer antiviralen Immunität führen. Sogenannte RNAi-basierten Therapeutika bieten daher neue Möglichkeiten Erkrankungen zu behandeln. Allerdings verhindert der Transport von siRNAs eine breite Anwendung. Durch das relativ hohe Molekulargewicht (ca. 13 kDa) und die starke negative Ladung können siRNAs nur schwer über die Zellwand diffundieren. Zudem sind sie instabil im Blutkreislauf und können ungeschützt Immunantworten auslösen.
Um den Transport von siRNAs zu verbesseren können virale und nicht-virale Vektoren eingesetzt werden. Nicht-virale Vektoren bieten im Vergleich zu viralen Vektoren eine höhere Sicherheit, einfachere Synthese, geringere Immunität und durch spezifische Modifikationen ein verbessertes Zell- und Gewebetargeting. Als vielversprechendste nicht-virale Vektoren gelten Chitosan (CS) und PEI. Beide haben den Vorteil, dass sie durch ihre positiven Ladungen Komplexe mit den negativ geladenen Nukleinsäuren eingehen können. Dadurch wird die siRNA stabilisiert und zudem der Transport über die Zellmembran erleichtert. Außerdem kann durch Anpassung der Polymere die physiochemischen Eigenschaften für den siRNA Transport optimiert werden. CS als nicht-viraler Vektor besitzt eine hohe Biokompabilität, eine gute Bioabbaubarkeit, ist nicht-toxisch und weißt nur eine vergleichsweise geringe Immunogenität auf.
Das Ziel der hier vorgestellten Studie ist das Design eines effizienten Transportsystems basierend auf CS Mikropartikeln für siRNA um das HIV-1tat Gen in C8166-Zellen zu inaktivieren. Dabei wird die Zytotoxizität, Zellaufnahme in Abhängigkeit von dem N:P-Ratio und der chemischen Struktur zunächst bei CS/hsDNA Mirkopartikeln als Modell untersucht. Anschließend werden die Versuche mit CS/siRNA-tat/revHIV-1 Partikeln wiederholt. Die synthetisierten CS Mikropartikel werden mit PEI und kommerziellen Liposomen für den siRNA Transport verglichen.
ERGEBNISSE
- Vergleich von 50 kDa und 150 kDa CS mit drei verschiedenen N:P-Ratios (5, 10, 20), höherer Partikeldurchmesser bei 50 kDa CS, dieser steigt mit dem N:P-Ratio
- Kein Einfluss von Molekulargewicht und N:P-Ratio auf PDI, Zeta-Potential ist positiver bei 50 kDa und höheren N:P-Ratios
- Auswahl von 50 kDa CS mit N:P-Ratio von 10 für weitere Versuche
- CS/hsDNA Mikropartikel wiesen eine sphärische Form und eine durchschnittliche Größe von 173 nm auf
- Einschlusseffizienz von mehr als 80 %, Nachweis hsDNA Bindung von CS durch Gelelektrophorese
- In vitro Freisetzungskinetik: erste 4 h nicht mehr als 11 %, nach 48 h erreichen des Plateauwertes von 40 % → langsame und stetige Freisetzung
- CS/siRNAtat/rev-HIV-1: kleinere Mikropartikel, höherer PDI und größeres Zeta-Potential im Vergleich zu CS/hsDNA, ähnliche Einschlusseffizienz
- Zytotoxizität: unabhängig von der verwendeten Konzentration (100, 20 und 10 μg/mL) kein Einfluss auf Zellmetabolismus nach 24, 48 und 72 h, allerdings morphologische Änderungen erkennbar
- Komplette Endozytosis nach 4 h
- Untersuchung Infektionsreduktion: CS im Vergleich zu PEI und den Liposomen als einziges Polymer in der Lage eine signifikante Virusinhibition pre- und post Infektion mit HIV-1 (40 und 60 %) zu erreichen
Zusammenfassung: In der vorgestellten Studie wurde siRNA erfolgreich an CS Mikropartikel gekoppelt und eingeschlossen. Dabei war die Verwendung von CS mit einem mittleren Molekulargewicht und N:P-Ratio optimal. Insgesamt konnten dadurch virale Proteine in HIV-1 infizierten C8166-Zellen erfolgreich inaktiviert werden, insbesondere im post-Infektionsstatus.
Link zum Artikel: https://www.mdpi.com/1996-1944/15/15/5340/htm